Environmental Research Letters (Jan 2023)

Impacts of large-scale Saharan solar farms on the global terrestrial carbon cycle

  • Katherine Power,
  • Zhengyao Lu,
  • Qiong Zhang

DOI
https://doi.org/10.1088/1748-9326/acf7d8
Journal volume & issue
Vol. 18, no. 10
p. 104009

Abstract

Read online

Amassing the available solar energy over the Sahara desert, through the installation of a large-scale solar farm, would satisfy the world’s current electricity needs. However, such land use changes may affect the global carbon cycle, possibly offsetting mitigation efforts. Here a fully coupled Earth System model EC-Earth was used to investigate the impact of a Saharan solar farm on the terrestrial carbon cycle, simulated with prescribed reduced surface albedo approximating the albedo effect of photovoltaic solar panels over the Sahara desert. The resulting changes to the carbon cycle were an enhancement of the carbon sink across Northern Africa, particularly around the Sahel but a simultaneous weakening of the carbon sink in the Amazon basin. This is observed through spatial pattern changes to the values of net biome production (NBP), more evident during Northern Hemisphere summer season. NBP changes are contributed by competing responses in the net primary production and heterotrophic respiration rates. These changes to carbon exchange correspond to a wetter and warmer climate occurring in Northern Africa and a drier and warmer climate in the Amazon, with stronger driving effects of precipitation. Due to these coupled responses and complex teleconnections, thorough investigation of remote impacts of solar farms are needed to avoid unintended consequences on the terrestrial carbon cycle.

Keywords