Cell Reports (Oct 2014)
Rewiring of an Epithelial Differentiation Factor, miR-203, to Inhibit Human Squamous Cell Carcinoma Metastasis
Abstract
Summary: Metastatic colonization of distant organs underpins the majority of human-cancer-related deaths, including deaths from head and neck squamous cell carcinoma (HNSCC). We report that miR-203, a miRNA that triggers differentiation in multilayered epithelia, inhibits multiple postextravasation events during HNSCC lung metastasis. Inducible reactivation of miR-203 in already established lung metastases reduces the overall metastatic burden. Using an integrated approach, we reveal that miR-203 inhibits metastasis independently of its effects on differentiation. In vivo genetic reconstitution experiments show that miR-203 inhibits lung metastasis by suppressing the prometastatic activities of three factors involved in cytoskeletal dynamics (LASP1), extracellular matrix remodeling (SPARC), and cell metabolism (NUAK1). Expression of miR-203 and its downstream effectors correlates with HNSCC overall survival outcomes, indicating the therapeutic potential of targeting this signaling axis. : Benaich et al. have identified miR-203, a microRNA that triggers differentiation in multilayered epithelia, as an inhibitor of lung metastasis in head and neck squamous cell carcinoma (HNSCC) cells. They show that miR-203 inhibits metastasis independently of its effects on differentiation. Rather, miR-203 suppresses the prometastatic activities of three factors involved in cytoskeletal dynamics (LASP1), extracellular matrix remodeling (SPARC), and cell metabolism (NUAK1). Expression of miR-203 and its downstream effectors correlates with survival in HNSCC patients.