Finite Element Approach for the Simulation of Modern MRAM Devices
Simone Fiorentini,
Nils Petter Jørstad,
Johannes Ender,
Roberto Lacerda de Orio,
Siegfried Selberherr,
Mario Bendra,
Wolfgang Goes,
Viktor Sverdlov
Affiliations
Simone Fiorentini
Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at the Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Nils Petter Jørstad
Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at the Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Johannes Ender
Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at the Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Roberto Lacerda de Orio
Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Siegfried Selberherr
Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Mario Bendra
Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at the Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Wolfgang Goes
Silvaco Europe Ltd., Cambridge PE27 5JL, UK
Viktor Sverdlov
Christian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic at the Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Vienna, Austria
Because of their nonvolatile nature and simple structure, the interest in MRAM devices has been steadily growing in recent years. Reliable simulation tools, capable of handling complex geometries composed of multiple materials, provide valuable help in improving the design of MRAM cells. In this work, we describe a solver based on the finite element implementation of the Landau–Lifshitz–Gilbert equation coupled to the spin and charge drift-diffusion formalism. The torque acting in all layers from different contributions is computed from a unified expression. In consequence of the versatility of the finite element implementation, the solver is applied to switching simulations of recently proposed structures based on spin-transfer torque, with a double reference layer or an elongated and composite free layer, and of a structure combining spin-transfer and spin-orbit torques.