International Journal of Multiphysics (Sep 2016)

Modelling Particulate Removal in Tubular Wet Electrostatic Precipitators Using a Modified Drift Flux Model

  • S Ramechecandane,
  • C Beghein

DOI
https://doi.org/10.1260/1750-9548.5.3.243
Journal volume & issue
Vol. 5, no. 3

Abstract

Read online

Tubular electrostatic precipitators (ESP) have been used in a number of chemical processing industries. The tubular ESPs have many advantages over conventional plate-plate and wire-plate ESPs. The present study is concerned with the numerical modeling of particulate removal in a tubular wet single-stage electrostatic precipitator (wESP). The geometric parameters of a model wESP and the corresponding inlet gas velocities for the wESP are chosen from available experimental data. In addition to the RNG k - ε model for the mean turbulent flow field inside the wESP, the Poisson equation for the electric field, the charge continuity equation and the concentration equation are solved sequentially to obtain a full-fledged solution to the problem under investigation. The proposed drift flux model is implemented in the opensource CFD code OpenFOAM®. The paper discusses the influence of the number of charges acquired by the particles and the corresponding inlet gas velocities on particle concentration distribution within the wESP. Two representative cases with monodispersed particles of 1 μm and 10 μm diameter are considered for the numerical analysis. It is seen from the present analysis that the number of units of charge on particles, the particle size and the inlet gas velocities play a vital role in determining the efficiency of electrostatic precipitation.