Sensors (Sep 2019)

Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals

  • Gaurav Tripathi,
  • Habib Anowarul,
  • Krishna Agarwal,
  • Dilip K. Prasad

DOI
https://doi.org/10.3390/s19194216
Journal volume & issue
Vol. 19, no. 19
p. 4216

Abstract

Read online

Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 μ m is difficult using conventional sensing and signal analysis approaches. Here, we use an unconventional ultrasound sensing approach that collects information of the entire bulk of the material and investigate the applicability of machine learning approaches for classifying such similar defects. Our results show that appropriate feature design combined with simple k-nearest neighbor classifier can provide up to 98% classification accuracy even though conventional features for time-series data and a variety of classifiers cannot achieve close to 70% accuracy. The newly proposed hybrid feature, which combines frequency domain information in the form of power spectral density and time domain information in the form of sign of slope change, is a suitable feature for achieving the best classification accuracy on this challenging problem.

Keywords