Frontiers in Cellular Neuroscience (Oct 2023)

Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit

  • Wolfgang Stein,
  • Wolfgang Stein,
  • Gabriela Torres,
  • Luis Giménez,
  • Luis Giménez,
  • Noé Espinosa-Novo,
  • Jan Phillipp Geißel,
  • Jan Phillipp Geißel,
  • Andrés Vidal-Gadea,
  • Steffen Harzsch

DOI
https://doi.org/10.3389/fncel.2023.1263591
Journal volume & issue
Vol. 17

Abstract

Read online

IntroductionAt the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats.MethodsWe address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades.Results and discussionConsistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.

Keywords