Discrete and Continuous Models and Applied Computational Science (Dec 2019)

Geodesic motion near self-gravitating scalar field configurations

  • Ivan M. Potashov,
  • Julia V. Tchemarina,
  • Alexander N. Tsirulev

DOI
https://doi.org/10.22363/2658-4670-2019-27-3-231-241
Journal volume & issue
Vol. 27, no. 3
pp. 231 – 241

Abstract

Read online

We study the geodesics motion of neutral test particles in the static spherically symmetric spacetimes of black holes and naked singularities supported by a selfgravitating real scalar field. The scalar field is supposed to model dark matter surrounding some strongly gravitating object such as the centre of our Galaxy. The behaviour of timelike and null geodesics very close to the centre of such a configuration crucially depends on the type of spacetime. It turns out that a scalar field black hole, analogously to a Schwarzschild black hole, has the innermost stable circular orbit and the (unstable) photon sphere, but their radii are always less than the corresponding ones for the Schwarzschild black hole of the same mass; moreover, these radii can be arbitrarily small. In contrast, a scalar field naked singularity has neither the innermost stable circular orbit nor the photon sphere. Instead, such a configuration has a spherical shell of test particles surrounding its origin and remaining in quasistatic equilibrium all the time. We also show that the characteristic properties of null geodesics near the centres of a scalar field naked singularity and a scalar field black hole of the same mass are qualitatively different.

Keywords