PLoS ONE (Jan 2018)
Diagnosis of amphimeriasis by LAMPhimerus assay in human stool samples long-term storage onto filter paper.
Abstract
Amphimeriasis, a fish-borne zoonotic disease caused by the liver fluke Amphimerus spp., has recently been reported as an emerging disease affecting an indigenous Ameridian group, the Chachi, living in Ecuador. The only method for diagnosing amphimeriasis was the microscopic detection of eggs from the parasite in patients' stool samples with very low sensitivity. Our group developed an ELISA technique for detection of anti-Amphimerus IgG in human sera and a molecular method based on LAMP technology (named LAMPhimerus) for specific and sensitive parasite DNA detection. The LAMPhimerus method showed to be much more sensitive than classical parasitological methods for amphimeriasis diagnosis using human stool samples for analysis. The objective of this work is to demonstrate the feasibility of using dried stool samples on filter paper as source of DNA in combination with the effectiveness of our previously designed LAMPhimerus assay for successfully Amphimerus sp. detection in clinical stool samples. A total of 102 untreated and undiluted stool samples collected from Chachi population were spread as thin layer onto common filter paper for easily transportation to our laboratory and stored at room temperature for one year until DNA extraction. When LAMPhimerus method was applied for Amphimerus sp. DNA detection, a higher number of positive results was detected (61/102; 59.80%) in comparison to parasitological methods (38/102; 37.25%), including 28/61 (45.90%) microscopy-confirmed Amphimerus sp. infections. The diagnostic parameters for the sensitivity and specificity werecalculated for our LAMPhimerus assay, which were 79.17% and 65.98%, respectively. We demonstrate, for the first time, that common filter paper is useful for easy collection and long-term storage of human stool samples for later DNA extraction and molecular analysis of human-parasitic trematode eggs. This simple, economic and easily handling method combined with the specific and sensible LAMPhimerus assay has the potential to beused as an effective molecular large-scale screening test for amphimeriasis-endemic areas.