Temporally stable beta sensorimotor oscillations and corticomuscular coupling underlie force steadiness
Scott J. Mongold,
Harri Piitulainen,
Thomas Legrand,
Marc Vander Ghinst,
Gilles Naeije,
Veikko Jousmäki,
Mathieu Bourguignon
Affiliations
Scott J. Mongold
Laboratory of Neurophysiology and Movement Biomechanics, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Corresponding author.
Harri Piitulainen
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
Thomas Legrand
Laboratory of Neurophysiology and Movement Biomechanics, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
Marc Vander Ghinst
Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
Gilles Naeije
Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
Veikko Jousmäki
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
Mathieu Bourguignon
Laboratory of Neurophysiology and Movement Biomechanics, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.