International Journal of Photoenergy (Jan 2014)
Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence
Abstract
Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H) films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ) solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc), fill factor (FF), and temperature coefficient (TC) of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79). The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.