Discrete Mathematics & Theoretical Computer Science (Jan 2013)

Rational Catalan Combinatorics: The Associahedron

  • Drew Armstrong,
  • Brendon Rhoades,
  • Nathan Williams

DOI
https://doi.org/10.46298/dmtcs.2355
Journal volume & issue
Vol. DMTCS Proceedings vol. AS,..., no. Proceedings

Abstract

Read online

Each positive rational number $x>0$ can be written $\textbf{uniquely}$ as $x=a/(b-a)$ for coprime positive integers 00$ a simplicial complex $\mathsf{Ass} (x)=\mathsf{Ass} (a,b)$ called the $\textit{rational associahedron}$. It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the $\textit{rational Catalan number}$ $\mathsf{Cat} (x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)! }{ a! b!}.$ The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its Fuss-Catalan generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that $\mathsf{Ass} (a,b)$ is shellable and give nice product formulas for its $h$-vector (the $\textit{rational Narayana numbers}$) and $f$-vector (the $\textit{rational Kirkman numbers}$). We define $\mathsf{Ass} (a,b)$ .

Keywords