Advances in Materials Science and Engineering (Jan 2020)

Application of Artificial Ground Freezing Technology in Modern Urban Underground Engineering

  • Yi Qi,
  • Jinxun Zhang,
  • Hao Yang,
  • Yongwei Song

DOI
https://doi.org/10.1155/2020/1619721
Journal volume & issue
Vol. 2020

Abstract

Read online

Based on typical water-rich sandy gravel strata in Beijing, in order to explore the application of the artificial ground freezing method (AGF) in urban large-scale underground engineering, the formation and development of freezing body were analyzed when multirow freezing pipes were working together, and the group effect exhibited during the freezing process was also revealed in this paper. On this basis, the basin-shaped freezing method (BFM) is put forward as an application of AGF used in underground engineering. BFM structure consists of two parts: the frozen curtain (basin wall) around the excavation scope and the horizontal frozen body (basin bottom) at the bottom of the station. Physical model test and numerical simulation were conducted to study temperature field expansion of BFM under two different conditions. The results show the following: (1) The group effect refers to the cooling effect of different freezing pipes influencing each other during freezing process. Under the condition of still water, the group effect expands the freezing area, and it shows the gradual development of freezing from back water surface to front water surface under seepage condition. (2) BFM can effectively play the role of water proofing, and although different parts of basin structure show different frozen order under different conditions, both basin wall and basin bottom can form an effective thickness during the freezing process.