Abstract Background Patients with metastatic spinal cord compression (MSCC) and favorable survival prognoses can benefit from radiation doses greater than 30Gy in 10 fractions in terms of improved local progression-free survival (LPFS) and overall survival (OS). Methods/design This prospective study mainly investigates LPFS after precision radiotherapy (volumetric modulated arc therapy or stereotactic body radiotherapy) with 18 × 2.33Gy in 3.5 weeks. LPFS is defined as freedom from progression of motor deficits during radiotherapy and an in-field recurrence of MSCC following radiotherapy. The maximum relative dose allowed to the spinal cord is 101.5% of the prescribed dose, resulting in an equivalent dose in 2Gy-fractions (EQD2) for radiation myelopathy is 45.5Gy, which is below the tolerance dose of 50Gy according to the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC). The EQD2 of this regimen for tumor cell kill is 43.1Gy, which is 33% higher than for 30Gy in 10 fractions (EQD2 = 32.5Gy). Primary endpoint is LPFS at 12 months after radiotherapy. Secondary endpoints include the effect of 18 × 2.33Gy on motor function, ambulatory status, sensory function, sphincter dysfunction, LPFS at other follow-up times, overall survival, pain relief, relief of distress and toxicity. Follow-up visits for all endpoints will be performed directly and at 1, 3, 6, 9 and 12 months after radiotherapy. A total of 65 patients are required for the prospective part of the study. These patients will be compared to a historical control group of at least 235 patients receiving conventional radiotherapy with 10x3Gy in 2 weeks. Discussion If precision radiotherapy with 18 × 2.33Gy results in significantly better LPFS than 10x3Gy of conventional radiotherapy, this regimen should be strongly considered for patients with MSCC and favorable survival prognoses. Trial registration Clinicaltrials.gov NCT04043156. Registered 30-07-2019.