Journal of Biomedical Semantics (May 2019)
An annotation and modeling schema for prescription regimens
Abstract
Abstract Background We introduce TranScriptML, a semantic representation schema for prescription regimens allowing various properties of prescriptions (e.g. dose, frequency, route) to be specified separately and applied (manually or automatically) as annotations to patient instructions. In this paper, we describe the annotation schema, the curation of a corpus of prescription instructions through a manual annotation effort, and initial experiments in modeling and automated generation of TranScriptML representations. Results TranScriptML was developed in the process of curating a corpus of 2914 ambulatory prescriptions written within the Partners Healthcare network, and its schema is informed by the content of that corpus. We developed the representation schema as a novel set of semantic tags for prescription concept categories (e.g. frequency); each tag label is defined with an accompanying attribute framework in which the meaning of tagged concepts can be specified in a normalized fashion. We annotated a subset (1746) of this dataset using cross-validation and reconciliation between multiple annotators, and used Conditional Random Field machine learning and various other methods to train automated annotation models based on the manual annotations. The TranScriptML schema implementation, manual annotation, and machine learning were all performed using the MITRE Annotation Toolkit (MAT). We report that our annotation schema can be applied with varying levels of pairwise agreement, ranging from low agreement levels (0.125 F for the relatively rare REFILL tag) to high agreement levels approaching 0.9 F for some of the more frequent tags. We report similarly variable scores for modeling tag labels and spans, averaging 0.748 F-measure with balanced precision and recall. The best of our various attribute modeling methods captured most attributes with accuracy above 0.9. Conclusions We have described an annotation schema for prescription regimens, and shown that it is possible to annotate prescription regimens at high accuracy for many tag types. We have further shown that many of these tags and attributes can be modeled at high accuracy with various techniques. By structuring the textual representation through annotation enriched with normalized values, the text can be compared against the pharmacist-entered structured data, offering an opportunity to detect and correct discrepancies.
Keywords