BMC Veterinary Research (Apr 2018)

Long term consistency and location specificity of equine gluteus medius muscle activity during locomotion on the treadmill

  • Rebeka R. Zsoldos,
  • Anna Voegele,
  • Bjoern Krueger,
  • Ulrike Schroeder,
  • Andreas Weber,
  • Theresia F. Licka

DOI
https://doi.org/10.1186/s12917-018-1443-y
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background The equine m. gluteus medius (GM) is the largest muscle of the horse, its main movement function is the extension of the hip joint. The objective of the present study was to measure equine GM activity in three adjacent locations on GM during walk and trot on a treadmill, in order to document potential differences. Fourteen Haflinger mares were measured using surface electromyography and kinematic markers to identify the motion cycles on three occasions over 16 weeks. The electrodes were placed on left and right gluteus medius muscle over the middle of its widest part and 5 cm lateral and medial of it. For data processing, electrical activity was normalised to its maximum value and timing was normalised to the motion cycle. A Gaussian distribution approach was used to determine up to 10 modes of focussed activity, and results were analysed separately for stance and swing phase of the ipsilateral hindlimb. Results Fair reliability was found for mean mode values (Cronbach’s alpha = 0.66) and good reliability was found for mean mode locations (Cronbach’s alpha = 0.71) over the three data collection days. The magnitude of muscle activity identified as mean mode value was much larger at trot than at walk, and mean mode value was significantly different between stance phases of walk and trot for all electrode positions (p < 0.01). The pattern of muscle activity identified as mean mode location was significantly different for walk and trot at all electrode positions, both during stance and swing phases (p < 0.001). This indicates the different timing pattern between the gaits. Results of the three electrode positions on the same muscle during each gait were not significantly different when comparing the same measurement. Conclusions The middle of the equine GM does not show any indication of functional differentiation during walk and trot on a treadmill; this might be due to lack of segmentation as such, or due to lack of need for segmented use for these very basic main tasks of the muscle. The reliability of the sEMG measurements over several weeks was fair to good, an indication for the robustness of the methodology.

Keywords