Journal of Marine Science and Engineering (Aug 2024)
Modal Decomposition of Internal Tides in the Luzon Strait through Two-Dimensional Fourier Bandpass Filtering
Abstract
Internal tides are pivotal dynamic processes enhancing the mixing of oceanic waters and facilitating energy transfer across various scales within the ocean. In recent years, the proliferation of satellite altimetry observations has enabled global predictions of the elevation and phase of internal tides. This study, leveraging the advanced global internal tide prediction model known as the Multivariate Inversion of Ocean Surface Topography-Internal Tide Model (MIOST-IT), employs a two-dimensional Fourier bandpass filtering approach to decompose the internal tides in the Luzon Strait, thereby addressing the east–west directional blind zones inherent in along-track satellite altimetry-based modal decomposition. To further elucidate the propagation trajectories of individual tidal modes in different directions, we introduce the directional Fourier filter method to characterize the spatial distribution features of each modal internal tide in the vicinity of the Luzon Strait. This work significantly enhances the accuracy and reliability of extracting parameters for distinct modal internal tides, furnishing a scientific basis for subsequent studies on internal tide dynamics and model refinement.
Keywords