Applied Sciences (Oct 2021)
The Role of Peripheral Nerve Electrotherapy in Functional Recovery of Muscle Motor Units in Patients after Incomplete Spinal Cord Injury
Abstract
Functional electrical nerve stimulation (FES) is a non-invasive technique for neuromodulation and may have the potential for motor rehabilitation following incomplete spinal cord injury (iSCI). Axonal degeneration in motor fibers of lower extremity nerves is an inevitable secondary pathological change in iSCI subjects, despite no direct damage to lumbosacral neuromeres. This study evaluated the role of FES with individual parameters based on results of comparative neurophysiological studies. Forty-two participants with C4 to Th12 iSCI received repetitive sessions of electrostimulations applied to peroneal and tibial motor fibers, performed five times a week from 6 to 14 months, and the uniform system of kinesiotherapeutic treatment. The average duration of one electrostimulation session was 17 min, stimulation frequency of a train 20–70 Hz, duration of 2–3 s, intervals 2–3 s, pulses intensity 18–45 mA. The algorithm change was based on objective tests of subsequent surface electromyography (sEMG), and electroneurography (ENG) recordings. The same neurophysiological studies were also performed in patients after C2-Th12 iSCI treated with kinesiotherapy only (K group, N = 25) and compared with patients treated with both kinesiotherapy and electrostimulation (K + E, N = 42). The study revealed improvements in sEMG parameters recorded from tibialis anterior, gastrocnemius, extensor digitorum brevis muscles, and ENG evoked a compound muscle action potential recorded following bilateral stimulation of more peroneal than tibial nerves. Neurophysiological recordings had significantly better parameters in the K + E group of patients after therapy but not in the K group patients. The improvement of the motor transmission peripherally may reflect the specific neuromodulatory effect of FES algorithm evaluated with sEMG and ENG. FES may inhibit degeneration of axons and support functional recovery after iSCI.
Keywords