Animals (Mar 2024)
Enhancing Milk Quality and Antioxidant Status in Lactating Dairy Goats through the Dietary Incorporation of Purple Napier Grass Silage
Abstract
Oxidative stress resulting from an imbalance between oxidants and antioxidants can cause damage to certain cellular components. Purple Napier grass, a semi-dwarf variety, is characterized by its purple leaves and contains anthocyanins, which provide it with antioxidant properties. This study examined the effects of feeding purple Napier grass (“Prince”) silage to lactating dairy goats on blood antioxidant activity, milk yield, and milk quality. Eighteen female Saanen crossbred goats, weighing 52.34 ± 2.86 kg and producing milk for 14 ± 2 days, were systematically divided into three groups based on their lactation period in the previous cycle as follows: early, mid, and late lactation. In a randomized complete block design (RCBD), treatments were randomly allocated to six animals in each block. The dairy goats were fed a total mixed ration (TMR) consisting of the three following treatments: control (100% Napier Pakchong 1 grass silage), 50% (a 50% replacement of the control with purple Napier grass silage), and 100% (100% purple Napier grass silage). The results show that goats who were fed a diet including 100% purple Napier grass silage showed higher levels of certain milk contents, especially with regard to lactose, when compared to those who were fed a control diet, as well as a diet with a 50% replacement of purple Napier grass silage. The somatic cell count (SCC) of these goats was reduced. In terms of antioxidant activity, dairy goats who were fed 100% purple Napier grass silage showed higher levels of enzymes in both plasma and milk, including glutathione s-transferase, total antioxidant capacity, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl radical, compared to the control group and the 50% replacement group. The plasma and milk of these goats showed lower levels of malondialdehyde. The dairy goats who were fed a 100% purple Napier grass silage diet showed higher concentrations of anthocyanins, including C3G, P3G, Peo3G, M3G, Cya, Pel, and total anthocyanins in milk, when compared to the control group and the 50% replacement group. The increased replacement of purple Napier grass silage led to significant differences in lactose levels, somatic cell count, glutathione S-transferase, total antioxidant capacity, superoxide dismutase, 2,2-diphenyl-1-picrylhydrazyl radical, and the composition of anthocyanins. This study provides evidence to support the use of purple Napier grass silage as a beneficial source of roughage for lactating dairy goats.
Keywords