Opuscula Mathematica (Jan 2019)

Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions

  • D. D. Hai,
  • X. Wang

DOI
https://doi.org/10.7494/opmath.2019.39.5.675
Journal volume & issue
Vol. 39, no. 5
pp. 675 – 689

Abstract

Read online

We prove the existence of positive solutions for the \(p\)-Laplacian problem \[\begin{cases}-(r(t)\phi (u^{\prime }))^{\prime }=\lambda g(t)f(u),& t\in (0,1),\\au(0)-H_{1}(u^{\prime }(0))=0,\\cu(1)+H_{2}(u^{\prime}(1))=0,\end{cases}\] where \(\phi (s)=|s|^{p-2}s\), \(p\gt 1\), \(H_{i}:\mathbb{R}\rightarrow\mathbb{R}\) can be nonlinear, \(i=1,2\), \(f:(0,\infty )\rightarrow \mathbb{R}\) is \(p\)-superlinear or \(p\)-sublinear at \(\infty\) and is allowed be singular \((\pm\infty)\) at \(0\), and \(\lambda\) is a positive parameter.

Keywords