Energies (Jan 2022)
Thermoeconomic Diagnosis of the Sequential Combustion Gas Turbine ABB/Alstom GT24
Abstract
In this study, we used the thermoeconomic theory to evaluate the impact of residue cost formation on the cost of electricity generated from natural gas burned in a gas turbine that applied sequential combustion; we also analyzed the impact of the combustion process on the additional fuel consumption to compensate for a malfunction component. We used the Alstom GT24 gas turbine, which applied sequential combustion and generated 235 MW of power. Thermoeconomic analysis indicated that the exergy cost of power generation was 626.33 MW (30.42% corresponded to irreversibility costs, and 29.22% and 2.84% corresponded to the formation costs of physical and chemical residues, respectively). The exergoeconomic production cost of gas turbine was 10,098.71 USD/h, 34.76% from external resources and 65.24% from capital and operating costs. Thermoeconomic diagnosis revealed that a compressor deterioration (of 1-% drop in the isentropic efficiency) resulted in an additional fuel consumption of 4.05 MW to compensate for an increase in irreversibilities (1.97 MW) and residues (2.08 MW); the compressor generated the highest cost (49.9% of additional requirement). Thus, our study can identify the origin of anomalies in a gas-turbine system and explain their effects on the rest of the components.
Keywords