DFT Insights into the Physical Properties of Layered LiMnSe<sub>2</sub> and LiMnTe<sub>2</sub> Compounds
Abdennour Benmakhlouf,
Fares Faid,
Nedjmeddine Ghermoul,
Kemal Özdoğan,
Taoufik Helaimia,
Abdelmadjid Bouhemadou,
Iosif Galanakis
Affiliations
Abdennour Benmakhlouf
Laboratoire des Matériaux pour Application et Valorisation des Energies Renouvelable (LMAVER), Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Fares Faid
Laboratoire des Matériaux pour Application et Valorisation des Energies Renouvelable (LMAVER), Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Nedjmeddine Ghermoul
Laboratoire des Matériaux pour Application et Valorisation des Energies Renouvelable (LMAVER), Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Kemal Özdoğan
Department of Physics, Yildiz Technical University, Istanbul 34210, Turkey
Taoufik Helaimia
Laboratoire des Matériaux pour Application et Valorisation des Energies Renouvelable (LMAVER), Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Abdelmadjid Bouhemadou
Laboratory for Developing New Materials and Their Characterizations, Department of Physics, Faculty of Science, Ferhat Abbas University-Setif 1, Setif 19000, Algeria
Iosif Galanakis
Department of Materials Science, School of Natural Sciences, University of Patras, 26504 Patras, Greece
Using state-of-the-art first-principles electronic-band-structure calculations alongside density functional theory, we investigated the structural, elastic, electronic, and magnetic properties of LiMnZ2 (Z = Se, Te) compounds with a trigonal structure. Initially, we determined the equilibrium lattice structure and atomic positions, which aligned well with experimental values. Ferromagnetism was shown to be more favorable than the non-magnetic state. The elastic constants, cohesive energies, and formation energies indicated that the studied compounds were mechanically stable in the experimentally determined trigonal lattice. The analysis of spin-polarized band structures and density of states revealed that both LiMnZ2 compounds exhibited perfect half-metallic characters. The total spin magnetic moment per formula unit adhered to the Slater–Pauling rule, being exactly 4 μΒ, mainly concentrated at the Mn atoms due to the strong spin polarization of the Mn d orbitals. We anticipate that our results will prompt further experimental and computational studies for the application of these layered materials in practical devices.