Energies (Mar 2016)

Buck Converter with Soft-Switching Cells for PV Panel Applications

  • Cheng-Tao Tsai,
  • Wang-Min Chen

DOI
https://doi.org/10.3390/en9030148
Journal volume & issue
Vol. 9, no. 3
p. 148

Abstract

Read online

In power conversion of photovoltaic (PV) energy, a hard-switching buck converter always generates some disadvantages. For example, serious electromagnetic interference (EMI), high switching losses, and stresses on an active switch (metal-oxide-semiconductor-field-effect-transistor, MOSFET), and high reverse-recovery losses of a freewheeling diode result in low conversion efficiency. To release these disadvantages, a buck converter with soft-switching cells for PV panel applications is proposed. To create zero-voltage-switching (ZVS) features of the active switches, a simple active soft-switching cell with an inductor, a capacitor, and a MOSFET is incorporated into the proposed buck converter. Therefore, the switching losses and stresses of the active switches and EMI can be reduced significantly. To reduce reverse-recovery losses of a freewheeling diode, a simple passive soft-switching cell with a capacitor and two diodes is implemented. To verify the performance and the feasibility of the proposed buck converter with soft-switching cells for PV panel applications, a prototype soft-switching buck converter is built and implemented by using a maximum-power-point-tracking (MPPT) method. Simulated and experimental results are presented from a 100 W soft-switching buck converter for PV panel applications.

Keywords