Complexity (Jan 2020)
ECT Image Reconstruction Algorithm Based on Multiscale Dual-Channel Convolutional Neural Network
Abstract
For the problems of missing edges and obvious artifacts in Electrical Capacitance Tomography (ECT) reconstruction algorithms, an image reconstruction method based on a multiscale dual-channel convolutional neural network is proposed. Firstly, the image reconstructed by Landweber algorithm is input into the convolutional neural network, and four scales are selected for feature extraction. Feature unions are used across the scales to fuse the information of the output layer with feature maps. To improve the imaging accuracy, two frequency channels are designed for the input image. The middle layer of the network consists of two fully convolutional structures. Convolutional layers and jump connections are designed separately for different channels, which greatly improves the network’s ability to extract feature information and reduces the number of feature maps required for each layer. The number of network layers is shallow, which can speed up the network training, prevent the network from falling into local optimum, and ensure the effective transmission of image details. Simulation experiments are carried out for four typical dual media distributions. The edges of the reconstructed image are smoother and the image error is smaller. It effectively resolves the lack of edges in the reconstruction image and reduces the image edge artifacts in the ECT system.