Energies (Jun 2023)
Parametric Study and Optimization of No-Blocking Heliostat Field Layout
Abstract
Generating electric power using solar thermal systems is effective, particularly for countries with high solar potential. In order to decide on a relevant location to implement the solar tower plant and develop the mathematical model of a no-blocking heliostat field, a meteorological assessment was discussed in this paper. In addition, a parametric study was examined to evaluate the effect of the designed parameters (heliostat size, heliostat height from the ground, tower height, receiver aperture, and the minimum radius) on the solar field’s performance. The preliminary solar field was then compared to the final design using the optimal design parameters. The obtained results showed that “Tamanrasset City” satisfied the necessary conditions for implementing a solar tower plant. According to preliminary solar field generation, no heliostat blocked its neighbor with a blocking efficiency of 100%. An analysis of its performance revealed that the optimized solar field would be capable of producing 15, 6571 MW, operating at an optical efficiency of 76.95%, and the enhancement rate of both efficiency and power output was 8.1%.
Keywords