Atmosphere (May 2022)

Optimization of the Efficient Extraction of Organic Components in Atmospheric Particulate Matter by Accelerated Solvent Extraction Technique and Its Application

  • Hao Zhang,
  • Yanqin Ren,
  • Jie Wei,
  • Yuanyuan Ji,
  • Xurong Bai,
  • Yanqiu Shao,
  • Hong Li,
  • Rui Gao,
  • Zhenhai Wu,
  • Zhijian Peng,
  • Feng Xue

DOI
https://doi.org/10.3390/atmos13050818
Journal volume & issue
Vol. 13, no. 5
p. 818

Abstract

Read online

Organic components in atmospheric fine particulate matter have attracted much attention and several scientific studies have been performed, although most of the sample extraction methods are time consuming and laborious. Accelerated solvent extraction (ASE) is a new sample extraction method offering number of advantages, such as low extraction cost, reduced solvent and time consumption, and simplified extraction protocols. In order to optimize ASE methods to determine the concentrations of organic compounds in atmospheric fine particulate matter, different parameters were set out for the experiment, and the optimal method was selected according to the recoveries of the standard (i.e., n−alkanes and polycyclic aromatic hydrocarbons (PAHs)). This study also involves a comparison of the optimal method with the traditional method of ultrasonic extraction (USE). In addition, the optimized method was applied to measure the mass concentrations of organic compounds (n−alkanes and PAHs) in fine particulate matter samples collected in Beijing. The findings showed that the average recovery of target compounds using ASE was 96%, with the majority of compounds falling within the confidence levels, and the ASE recoveries and precision were consistent with the USE method tested. Furthermore, ASE combines the advantages of high extraction efficiency, automation, and reduced solvent use. In conclusion, the optimal ASE methods can be used to extract organic components in atmospheric particulate matter and serve as a point of reference for the development of analytical methodologies for assessing organic compounds in atmospheric particulate matter in China.

Keywords