Nature Environment and Pollution Technology (Sep 2024)

Microbial Fuel Cell: Optimizing Graphene-Sponge Anode Thickness and Chamber pH Using Taguchi Experimental Method

  • Emilio Steven C. Navarro and Melissa May M. Boado

DOI
https://doi.org/10.46488/NEPT.2024.v23i03.008
Journal volume & issue
Vol. 23, no. 3
pp. 1345 – 1362

Abstract

Read online

The rapid consumption of fossil fuels has led to calls to switch from non-renewable to renewable energy sources. Microbial fuel cells are a promising technology that simultaneously treats wastewater and produces power. This study used the Taguchi Experimental method to optimize anode thickness and pH to obtain the maximum power density of an air-cathode microbial fuel cell (ACMFC). The graphene-sponge (G-S) anode thickness and chamber pH were selected as operating parameters, with their corresponding levels. The L9 orthogonal array was chosen for the experimental design. According to the Taguchi Method, the optimum G-S anode thickness and chamber pH were determined to be 1.0 cm and 8.0, respectively. A confirmatory run was performed under these optimum conditions, and the maximum power density observed was 707.75 mW·m−3. Analysis of variance (ANOVA) was conducted to identify the percentage contributions of the operating parameters to the process, which were found to be 30.66% for pH and 69.34% for anode thickness.

Keywords