Animals (Jan 2024)

Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle

  • Bicheng Zou,
  • Fan Long,
  • Fuguang Xue,
  • Chuanbin Chen,
  • Xian Zhang,
  • Mingren Qu,
  • Lanjiao Xu

DOI
https://doi.org/10.3390/ani14020313
Journal volume & issue
Vol. 14, no. 2
p. 313

Abstract

Read online

The present study investigates the theoretical basis for maintaining normal physiological functions in heat-stressed beef cattle by exploring the effects of niacin supplementation on the permeability of the rumen epithelial cell barrier. Herein, 12 Jinjiang bulls with an average weight of approximately 400 ± 20.0 kg were randomly divided into three groups, thermoneutral (TN), heat-stressed (HS), and heat-stressed niacin-supplemented (HN) groups, with 4 bulls in each group. The experiment spanned 70 days, and the plasma concentrations of D-lactic acid, diamine oxidase (DAO), lipopolysaccharides (LPSs), and inflammatory cytokines were analyzed. Additionally, we assessed the gene expression of tight junction proteins to understand the effect of niacin supplementation on heat-stressed beef cattle. Our results revealed that heat stress significantly increased the D-lactic acid and LPS levels in beef cattle plasma on days 30 and 45 of the experiment (p p p p p p p p > 0.05). Our findings indicate that heat stress adversely impacted the tight junction structure of the rumen epithelium, leading to a significant reduction in the expression of tight junction protein mRNA. Consequently, heat stress impaired the rumen mucosal barrier function, resulting in increased intestinal permeability. The mechanism underlying this effect may be associated with the decreased expression of tight junction protein genes in the rumen epithelial cells. However, niacin supplementation mitigated the detrimental effects of heat stress on intestinal permeability in beef cattle and increased the expression of tight junction protein genes in the rumen epithelium, thereby effectively protecting the rumen barrier in heat-stressed beef cattle. These results highlight the potential of nicotinic acid as a protective agent against the negative impacts of heat stress on intestinal integrity in beef cattle.

Keywords