Frontiers in Future Transportation (Apr 2022)

Ensemble Models of For-Hire Vehicle Trips

  • Hao Wu,
  • David Levinson

DOI
https://doi.org/10.3389/ffutr.2022.876880
Journal volume & issue
Vol. 3

Abstract

Read online

Ensemble forecasting is class of modeling approaches that combines different data sources, models of different types, with different assumptions, and/or pattern recognition methods. By comprehensively pooling information from multiple sources, analyzed with different techniques, ensemble models can be more accurate, and can better account for different sources of real-world uncertainties. The share of for-hire vehicle (FHV) trips increased rapidly in recent years. This paper applies ensemble models to predicting for-hire vehicle (FHV) trips in Chicago and New York City, showing that properly applied ensemble models can improve forecast accuracy beyond the best single model.

Keywords