FEBS Open Bio (Jun 2021)

Transfer of stabilising mutations between different secondary active transporter families

  • Cristina Cecchetti,
  • Nicola J. Scull,
  • Thotegowdanapalya C. Mohan,
  • Yilmaz Alguel,
  • Alexandra M. C. Jones,
  • Alexander D. Cameron,
  • Bernadette Byrne

DOI
https://doi.org/10.1002/2211-5463.13168
Journal volume & issue
Vol. 11, no. 6
pp. 1685 – 1694

Abstract

Read online

Integral membrane transporters play essential roles in the movement of substrates across biological membranes. One approach to produce transporters suitable for structural studies is to introduce mutations that reduce conformational flexibility and increase stability. However, it can be difficult to predict which mutations will result in a more stable protein. Previously, we stabilised the uric acid‐xanthine transporter, UapA, a member of the SLC23 family, through introduction of a single‐point mutation, G411V, trapping the protein in the inward‐facing conformation. Here, we attempted to stabilise the structurally related BOR1 transporter from Arabidopsis thaliana, a member of the SLC4 family, by introducing the equivalent substitution. We identified possible residues, P362 and M363, in AtBOR1, likely to be equivalent to the G411 of UapA, and generated four mutants, P362V or L and M363F or Y. Stability analysis using heated Fluorescent Size Exclusion Chromatography indicated that the M363F/Y mutants were more stable than the WT AtBOR1 and P362V/L mutants. Furthermore, functional complementation analysis revealed that the M363F/Y mutants exhibited reduced transport activity compared to the P362V/L and WT proteins. Purification and crystallisation of the M363F/Y proteins yielded crystals that diffracted better than WT (5.5 vs 7 Å). We hypothesise that the increased bulk of the F and Y substitutions limits the ability of the protein to undergo the conformational rearrangements associated with transport. These proteins represent a basis for future studies on AtBOR1.

Keywords