Electronic Journal of Differential Equations (Feb 2016)

Exact asymptotic behavior of the positive solutions for some singular Dirichlet problems on the half line

  • Habib Maagli,
  • Ramzi Alsaedi,
  • Noureddine Zeddini

Journal volume & issue
Vol. 2016, no. 49,
pp. 1 – 14

Abstract

Read online

In this article, we give an exact behavior at infinity of the unique solution to the following singular boundary value problem $$\displaylines{ -\frac{1}{A}(Au')'=q(t)g(u), \quad t \in (0,\infty), \cr u>0, \quad \lim_{t\to 0}A(t)u'(t)=0, \quad \lim_{t\to \infty}u(t)=0. }$$ Here A is a nonnegative continuous function on $[0,\infty)$, positive and differentiable on $(0,\infty)$ such that $$ \lim_{t\to \infty}\frac{tA'(t)}{A(t)}=\alpha>1, \quad g \in C^1((0,\infty),(0,\infty)) $$ is non-increasing on $(0,\infty)$ with $\lim_{t\to 0}g'(t)\int_0^t\frac{ds}{g(s)}=-C_g\leq 0$ and the function q is a nonnegative continuous, satisfying $$ 00$ and y is continuous on $[ 1,\infty)$ such that $\lim_{t\to \infty}y(t)=0$.

Keywords