Buildings (Jul 2024)
Roof Shape Design for Ice Rinks in Cold Regions under Carbon Reduction Targets
Abstract
In the midst of today’s energy crisis, carbon emissions from ice rinks in cold regions present a significant environmental challenge. The shape of an ice rink’s roof significantly influences these emissions. This study developed a methodology to quantify the carbon emissions of ice rinks and explained how their roof shapes impact emissions during the operational phase. Roof shapes were divided into the following three categories: flat, curved, and combined torsion shell. Carbon emission modeling was established and calibrated using the Ladybug + Honeybee platform, followed by regression analyses on the slope and curvature of each roof type. The findings indicate a robust correlation between the carbon emissions of an ice rink and the slope and curvature of its roof. Roof shape influences approximately 2% of carbon emissions during the operational phase of an ice rink. Among the various roof shapes, the curved dome roof demonstrates the most effective overall carbon savings, at a rate of 0.93% compared to the flat roof. Selecting an appropriate roof shape has significant carbon-saving potential for ice rinks. The findings of this study may serve as a valuable reference for the formulation of energy-saving design standards in cold regions.
Keywords