mBio (Apr 2022)

Role of MUC5B during Group B Streptococcal Vaginal Colonization

  • Lindsey R. Burcham,
  • Jade R. Bath,
  • Caroline A. Werlang,
  • Laurie M. Lyon,
  • Naoko Liu,
  • Christopher Evans,
  • Katharina Ribbeck,
  • Kelly S. Doran

DOI
https://doi.org/10.1128/mbio.00039-22
Journal volume & issue
Vol. 13, no. 2

Abstract

Read online

ABSTRACT The female reproductive tract (FRT) is a complex environment, rich in mucin glycoproteins that form a dense network on the surface of the underlying epithelia. Group B Streptococcus (GBS) asymptomatically colonizes 25–30% of healthy women, but during pregnancy can cause ascending infection in utero or be transmitted to the newborn during birth to cause invasive disease. Though the cervicovaginal mucosa is a natural site for GBS colonization, the specific interactions between GBS and mucins remain unknown. Here we demonstrate for the first time that MUC5B interacts directly with GBS and promotes barrier function by inhibiting both bacterial attachment to human epithelial cells and ascension from the vagina to the uterus in a murine model of GBS colonization. RNA sequencing analysis of GBS exposed to MUC5B identified 128 differentially expressed GBS genes, including upregulation of the pilus island-2b (PI-2b) locus. We subsequently show that PI-2b is important for GBS attachment to reproductive cells, binding to immobilized mucins, and vaginal colonization in vivo. Our results suggest that while MUC5B plays an important role in host defense, GBS upregulates pili in response to mucins to help promote persistence within the vaginal tract, illustrating the dynamic interplay between pathogen and host. IMPORTANCE Mucin glycoproteins are a major component that contributes to the complexity of the female reproductive tract (FRT). Group B Streptococcus (GBS) is present in the FRT of 25–30% of healthy women, but during pregnancy can ascend to the uterus to cause preterm birth and fetal infection in utero. Here we show that a prominent mucin found in the FRT, MUC5B, promotes host defense by inhibiting GBS interaction with epithelial cells found in the FRT and ascension from the vagina to the uterus in vivo. In response to MUC5B, GBS induces the expression of surface expressed pili, which in turn contributes to GBS persistence within the vaginal lumen. These observations highlight the importance and complexity of GBS–mucin interactions that warrant further investigation.

Keywords