Rational Design and Characterization of Symmetry-Breaking Organic Semiconductors in Polymer Solar Cells: A Theory Insight of the Asymmetric Advantage
Zezhou Liang,
Lihe Yan,
Jinhai Si,
Pingping Gong,
Xiaoming Li,
Deyu Liu,
Jianfeng Li,
Xun Hou
Affiliations
Zezhou Liang
Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Lihe Yan
Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Jinhai Si
Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Pingping Gong
Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Xiaoming Li
School of Chemistry, Beihang University, Beijing 100191, China
Deyu Liu
Department of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Jianfeng Li
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Xun Hou
Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Asymmetric molecule strategy is considered an effective method to achieve high power conversion efficiency (PCE) of polymer solar cells (PSCs). In this paper, nine oligomers are designed by combining three new electron-deficient units (unitA)—n1, n2, and n3—and three electron-donating units (unitD)—D, E, and F—with their π-conjugation area extended. The relationships between symmetric/asymmetric molecule structure and the performance of the oligomers are investigated using the density functional theory (DFT) and time-dependent density functional theory (TD–DFT) calculations. The results indicate that asymmetry molecule PEn2 has the minimum dihedral angle in the angle between two planes of unitD and unitA among all the molecules, which exhibited the advantages of asymmetric structures in molecular stacking. The relationship of the values of ionization potentials (IP) and electron affinities (EA) along with the unitD/unitA π-extend are revealed. The calculated reorganization energy results also demonstrate that the asymmetric molecules PDn2 and PEn2 could better charge the extraction of the PSCs than other molecules for their lower reorganization energy of 0.180 eV and 0.181 eV, respectively.