Information (Jul 2023)

MSGAT-Based Sentiment Analysis for E-Commerce

  • Tingyao Jiang,
  • Wei Sun,
  • Min Wang

DOI
https://doi.org/10.3390/info14070416
Journal volume & issue
Vol. 14, no. 7
p. 416

Abstract

Read online

Sentence-level sentiment analysis, as a research direction in natural language processing, has been widely used in various fields. In order to address the problem that syntactic features were neglected in previous studies on sentence-level sentiment analysis, a multiscale graph attention network (MSGAT) sentiment analysis model based on dependent syntax is proposed. The model adopts RoBERTa_WWM as the text encoding layer, generates graphs on the basis of syntactic dependency trees, and obtains sentence sentiment features at different scales for text classification through multilevel graph attention network. Compared with the existing mainstream text sentiment analysis models, the proposed model achieves better performance on both a hotel review dataset and a takeaway review dataset, with 94.8% and 93.7% accuracy and 96.2% and 90.4% F1 score, respectively. The results demonstrate the superiority and effectiveness of the model in Chinese sentence sentiment analysis.

Keywords