Karpatsʹkì Matematičnì Publìkacìï (Dec 2021)

Approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces

  • Z. Cakir,
  • C. Aykol,
  • V.S. Guliyev,
  • A. Serbetci

DOI
https://doi.org/10.15330/cmp.13.3.750-763
Journal volume & issue
Vol. 13, no. 3
pp. 750 – 763

Abstract

Read online

In this paper we investigate the best approximation by trigonometric polynomials in the variable exponent weighted Morrey spaces ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$, where $w$ is a weight function in the Muckenhoupt $A_{p(\cdot)}(I_{0})$ class. We get a characterization of $K$-functionals in terms of the modulus of smoothness in the spaces ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$. Finally, we prove the direct and inverse theorems of approximation by trigonometric polynomials in the spaces ${\mathcal{\widetilde{M}}}_{p(\cdot),\lambda(\cdot)}(I_{0},w),$ the closure of the set of all trigonometric polynomials in ${\mathcal{M}}_{p(\cdot),\lambda(\cdot)}(I_{0},w)$.

Keywords