Nature Communications (Apr 2022)

Data-driven learning how oncogenic gene expression locally alters heterocellular networks

  • David J. Klinke II,
  • Audry Fernandez,
  • Wentao Deng,
  • Atefeh Razazan,
  • Habibolla Latifizadeh,
  • Anika C. Pirkey

DOI
https://doi.org/10.1038/s41467-022-29636-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

While mechanistic models play increasing roles in immuno-oncology, hand network curation is current practice. Here the authors use a Bayesian data-driven approach to infer how expression of a secreted oncogene alters the cellular landscape within the tumor.