Journal of Dairy Science (Apr 2023)

Invited review: Recursive models in animal breeding: Interpretation, limitations, and extensions

  • L. Varona,
  • O. González-Recio

Journal volume & issue
Vol. 106, no. 4
pp. 2198 – 2212

Abstract

Read online

ABSTRACT: Structural equation models allow causal effects between 2 or more variables to be considered and can postulate unidirectional (recursive models; RM) or bidirectional (simultaneous models) causality between variables. This review evaluated the properties of RM in animal breeding and how to interpret the genetic parameters and the corresponding estimated breeding values. In many cases, RM and mixed multitrait models (MTM) are statistically equivalent, although subject to the assumption of variance-covariance matrices and restrictions imposed for achieving model identification. Inference under RM requires imposing some restrictions on the (co)variance matrix or on the location parameters. The estimates of the variance components and the breeding values can be transformed from RM to MTM, although the biological interpretation differs. In the MTM, the breeding values predict the full influence of the additive genetic effects on the traits and should be used for breeding purposes. In contrast, the RM breeding values express the additive genetic effect while holding the causal traits constant. The differences between the additive genetic effect in RM and MTM can be used to identify the genomic regions that affect the additive genetic variation of traits directly or causally mediated for another trait or traits. Furthermore, we presented some extensions of the RM that are useful for modeling quantitative traits with alternative assumptions. The equivalence of RM and MTM can be used to infer causal effects on sequentially expressed traits by manipulating the residual (co)variance matrix under the MTM. Further, RM can be implemented to analyze causality between traits that might differ among subgroups or within the parametric space of the independent traits. In addition, RM can be expanded to create models that introduce some degree of regularization in the recursive structure that aims to estimate a large number of recursive parameters. Finally, RM can be used in some cases for operational reasons, although there is no causality between traits.

Keywords