AIMS Mathematics (Aug 2024)

Distance spectrum of some zero divisor graphs

  • Fareeha Jamal ,
  • Muhammad Imran

DOI
https://doi.org/10.3934/math.20241166
Journal volume & issue
Vol. 9, no. 9
pp. 23979 – 23996

Abstract

Read online

In the present article, we give the distance spectrum of the zero divisor graphs of the commutative rings $ \mathbb{Z}_{t}[x]/\langle x^{4} \rangle $ ($ t $ is any prime), $ \mathbb{Z}_{t^2}[x] / \langle x^2 \rangle $ ($ t \geq 3 $ is any prime) and $ \mathbb{F}_{t}[u] / \langle u^3 \rangle $ ($ t $ is an odd prime), where $ \mathbb{Z}_{t} $ is an integer modulo ring and $ \mathbb{F}_{t} $ is a field. We calculated the inertia of these zero divisor graphs and established several sharp bounds for the distance energy of these graphs.

Keywords