Scientific Reports (Mar 2017)

Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway

  • Hui Li,
  • Xiao-Qiu Tan,
  • Li Yan,
  • Bo Zeng,
  • Jie Meng,
  • Hai-Yan Xu,
  • Ji-Min Cao

DOI
https://doi.org/10.1038/s41598-017-00386-3
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 12

Abstract

Read online

Abstract The impact of nanomaterials on immune cells is gaining attention but is not well documented. Here, we report a novel stimulating effect of carboxylated multi-walled carbon nanotubes (c-MWCNTs) on the migration of macrophages and uncover the underlying mechanisms, especially the upstream signaling, using a series of techniques including transwell migration assay, patch clamp, ELISA and confocal microscopy. c-MWCNTs dramatically stimulated the migration of RAW264.7 macrophages when endocytosed, and this effect was abolished by inhibiting phospholipase C (PLC) with U-73122, antagonizing the IP3 receptor with 2-APB, and blocking calcium release-activated calcium (CRAC) channels with SK&F96365. c-MWCNTs directly activated PLC and increased the IP3 level and [Ca2+]i level in RAW264.7 cells, promoted the translocation of the ER-resident stromal interaction molecule 1 (STIM1) towards the membranous calcium release-activated calcium channel modulator 1 (Orai1), and increased CRAC current densities in both RAW264.7 cells and HEK293 cells stably expressing the CRAC channel subunits Orai1 and STIM1. c-MWCNTs also induced dramatic spatial polarization of KCa3.1 channels in the RAW264.7 cells. We conclude that c-MWCNT is an activator of PLC and strongly recruits macrophages via the PLC/IP3/CRAC channel signaling cascade. These novel findings may provide a fundamental basis for the impact of MWCNTs on the immune system.