Quantum Reports (Mar 2025)

On the Holographic Spectral Effects of Time-Interval Subdivisions

  • Sky Nelson-Isaacs

DOI
https://doi.org/10.3390/quantum7010014
Journal volume & issue
Vol. 7, no. 1
p. 14

Abstract

Read online

Drawing on formal parallels between scalar diffraction theory and quantum mechanics, it is demonstrated that quantum wavefunction propagation requires a holographic model of time. Measurable time manifests between interactions as a duration which is encoded in the frequency domain. It is thus a unified entity, and attempts to subdivide these intervals introduce oscillatory artifacts or spectral broadening, altering the system’s physical characteristics. Analogous to spatial holograms, where information is distributed across interference patterns, temporal intervals encode information as a discrete whole. This framework challenges the concept of continuous time evolution, suggesting instead that discrete trajectories define a frequency spectrum which holographically constructs the associated time interval, giving rise to the experimentally observed energy spread of particles in applications such as time-bin entanglement, ultra-fast light pulses, and the temporal double slit. A generalized model of quantum wavefunction propagation based on recursive Fourier transforms is discussed, and novel applications are proposed, including starlight analysis and quantum cryptography.

Keywords