Cancer Imaging (Aug 2021)
Implementing CT tumor volume and CT pleural thickness into future staging systems for malignant pleural mesothelioma
Abstract
Abstract Objectives Tumor thickness and tumor volume measured by computed tomography (CT) were suggested as valuable prognosticator for patients’ survival diagnosed with malignant pleural mesothelioma (MPM). The purpose was to assess the accuracy of CT scan based preoperatively measured tumor volume and thickness compared to actual tumor weight of resected MPM specimen and pathologically assessed tumor thickness, as well as an analysis of their impact on overall survival (OS). Methods Between 09/2013–08/2018, 74 patients were treated with induction chemotherapy followed by (extended) pleurectomy/decortication ((E)PD). In 53 patients, correlations were made between CT-measured volume and -tumor thickness (cTV and cTT) and actual tumor weight (pTW) based on the available values. Further cTV and pT/IMIG stage were correlated using Pearson correlation. Overall survival (OS) was calculated with Kaplan Meier analysis and tested with log rank test. For correlation with OS Kaplan-Meier curves were made and log rank test was performed for all measurements dichotomized at the median. Results Median pathological tumor volume (pTV) and pTW were 530 ml [130 ml – 1000 ml] and 485 mg [95 g – 982 g] respectively. Median (IQR) cTV was 77.2 ml (35.0–238.0), median cTT was 9.0 mm (6.2–13.7). Significant association was found between cTV and pTV (R = 0.47, p < 0.001) and between cTT and IMIG stage (p = 0,001) at univariate analysis. Multivariate regression analysis revealed, that only cTV correlates with pTV. Median follow-up time was 36.3 months with 30 patients dead at the time of the analysis. Median OS was 23.7 months. 1-year and 3-year survival were 90 and 26% respectively and only the cTV remained statistically associated with OS. Conclusion Preoperatively assessed CT tumor volume and actual tumor volume showed a significant correlation. CT tumor volume may predict pathological tumor volume as a reflection of tumor burden, which supports the integration of CT tumor volume into future staging systems.
Keywords