Water (May 2023)

Hydrochemistry of the Geothermal in Gonghe Basin, Northeastern Tibetan Plateau: Implications for Hydro-Circulation and the Geothermal System

  • Shasha Liu,
  • Xianchun Tang,
  • Xiaomeng Han,
  • Dailei Zhang,
  • Guiling Wang

DOI
https://doi.org/10.3390/w15111971
Journal volume & issue
Vol. 15, no. 11
p. 1971

Abstract

Read online

The existence of high-temperature geothermal anomalies in the Gonghe Basin on the northeastern margin of the Tibetan Plateau has highlighted a new perspective on the geothermal system of the Himalayan-Tibetan Plateau orogen. In this study, we collected 32 groups of liquid and gas samples from geothermal water, rivers, and boreholes in the Gonghe basin to analyze hydrochemistry, stable isotopes, and geochronology, which allow us to further reveal the geothermal fluid circulations of geothermal reservoirs. The ion contents of liquids identify two distinguished types of water, namely the Na-SO4-Cl type primarily from geothermal water and the Na-SO4-HCO3 and Na-Ca-CO3-SO4 types primarily from cold water. The compositions of the hydrogen and oxygen isotopes of the samples indicate geothermal waters were recharged by atmospheric precipitation and 3000–4600 m high snow mountain meltwater, which may have experienced circulation of 16,300–17,300 years and mixtures of submodern and recent recharge water sources evidenced by isotopes of 3H, 13C, and 14C data. The 3He/4He ratios of these geothermal waters varying from 0.03 to 0.84 Ra further highlighted a crustal-dominated heat source in the region. The deep thermal reservoir temperature in the Gonghe Basin at 160 ± 10 °C and the depth of circulation of geothermal water is 2200–2500 m. Based on this evidence, we have established a geothermal fluid circulation model and refined the exchange processes of fluids and geothermal heat, further enriching the details of the geothermal system in Gonghe Basin.

Keywords