Sensors (Jun 2025)
DRGNet: Enhanced VVC Reconstructed Frames Using Dual-Path Residual Gating for High-Resolution Video
Abstract
In recent years, with the rapid development of the Internet and mobile devices, the high-resolution video industry has ushered in a booming golden era, making video content the primary driver of Internet traffic. This trend has spurred continuous innovation in efficient video coding technologies, such as Advanced Video Coding/H.264 (AVC), High Efficiency Video Coding/H.265 (HEVC), and Versatile Video Coding/H.266 (VVC), which significantly improves compression efficiency while maintaining high video quality. However, during the encoding process, compression artifacts and the loss of visual details remain unavoidable challenges, particularly in high-resolution video processing, where the massive amount of image data tends to introduce more artifacts and noise, ultimately affecting the user’s viewing experience. Therefore, effectively reducing artifacts, removing noise, and minimizing detail loss have become critical issues in enhancing video quality. To address these challenges, this paper proposes a post-processing method based on Convolutional Neural Network (CNN) that improves the quality of VVC-reconstructed frames through deep feature extraction and fusion. The proposed method is built upon a high-resolution dual-path residual gating system, which integrates deep features from different convolutional layers and introduces convolutional blocks equipped with gating mechanisms. By ingeniously combining gating operations with residual connections, the proposed approach ensures smooth gradient flow while enhancing feature selection capabilities. It selectively preserves critical information while effectively removing artifacts. Furthermore, the introduction of residual connections reinforces the retention of original details, achieving high-quality image restoration. Under the same bitrate conditions, the proposed method significantly improves the Peak Signal-to-Noise Ratio (PSNR) value, thereby optimizing video coding quality and providing users with a clearer and more detailed visual experience. Extensive experimental results demonstrate that the proposed method achieves outstanding performance across Random Access (RA), Low Delay B-frame (LDB), and All Intra (AI) configurations, achieving BD-Rate improvements of 6.1%, 7.36%, and 7.1% for the luma component, respectively, due to the remarkable PSNR enhancement.
Keywords