BMC Research Notes (Jan 2009)
Inhibitory effects of rat bone marrow-derived dendritic cells on naïve and alloantigen-specific CD4+ T cells: a comparison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10
Abstract
Abstract Background Unlike mouse immature bone marrow (BM)-derived dendritic cells (DC), rat immature BMDC have not been thoroughly characterised in vitro for the mechanisms underlying their suppressive effect. To better characterise these mechanisms we therefore analysed the phenotypes and immune inhibitory properties of rat BMDC generated with GM-CSF plus IL-4 (= IL-4 DC) and with GM-CSF plus IL-10 (= IL-10 DC). Results Both IL-4 DC and IL-10 DC exhibited lower surface expression of MHC class II and costimulatory molecules than mature splenic DC. They had a strong inhibitory effect on responsive T cells in vitro and despite their weak function as antigen-presenting cells they induced anergic T cells. However, only anergic T cells induced by IL-4 DC had a suppressive effect on responsive T cells. Induction of suppressive/tolerogenic T cells by IL-4 DC required direct contact between antigen-specific T cells and IL-4 DC. In addition, IL-4 DC and IL-10 DC prolonged allograft survival in an antigen-specific manner. Conclusion A unique phenotype of immature BMDC was isolated from the cultures. The mechanisms underlying the suppressive effect may be caused by their inability to deliver adequate costimulatory signals for T-cell activation. In addition, IL-4 DC but not IL-10 DC induce anergic T cells with suppressive function. This indicates that IL-4 DC and IL-10 DC may differ in the quality of their costimulation although no differences in the surface expression of costimulatory molecules were found.