PLoS ONE (Jan 2015)

Cullin3-BTB interface: a novel target for stapled peptides.

  • Ivan de Paola,
  • Luciano Pirone,
  • Maddalena Palmieri,
  • Nicole Balasco,
  • Luciana Esposito,
  • Luigi Russo,
  • Daniela Mazzà,
  • Lucia Di Marcotullio,
  • Sonia Di Gaetano,
  • Gaetano Malgieri,
  • Luigi Vitagliano,
  • Emilia Pedone,
  • Laura Zaccaro

DOI
https://doi.org/10.1371/journal.pone.0121149
Journal volume & issue
Vol. 10, no. 4
p. e0121149

Abstract

Read online

Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3-BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the "stapling" with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49-68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300-600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.