npj Systems Biology and Applications (Dec 2024)
A multiscale model of immune surveillance in micrometastases gives insights on cancer patient digital twins
Abstract
Abstract Metastasis is the leading cause of death in patients with cancer, driving considerable scientific and clinical interest in immunosurveillance of micrometastases. We investigated this process by creating a multiscale mathematical model to study the interactions between the immune system and the progression of micrometastases in general epithelial tissue. We analyzed the parameter space of the model using high-throughput computing resources to generate over 100,000 virtual patient trajectories. We demonstrated that the model could recapitulate a wide variety of virtual patient trajectories, including uncontrolled growth, partial response, and complete immune response to tumor growth. We classified the virtual patients and identified key patient parameters with the greatest effect on the simulated immunosurveillance. We highlight the lessons derived from this analysis and their impact on the nascent field of cancer patient digital twins (CPDTs). While CPDTs could enable clinicians to systematically dissect the complexity of cancer in each individual patient and inform treatment choices, our work shows that key challenges remain before we can reach this vision. In particular, we show that there remain considerable uncertainties in immune responses, unreliable patient stratification, and unpredictable personalized treatment. Nonetheless, we also show that in spite of these challenges, patient-specific models suggest strategies to increase control of clinically undetectable micrometastases even without complete parameter certainty.