IJAIN (International Journal of Advances in Intelligent Informatics) (Nov 2022)

Aspect-based sentiment analysis for hotel reviews using an improved model of long short-term memory

  • Rahmat Jayanto,
  • Retno Kusumaningrum,
  • Adi Wibowo

DOI
https://doi.org/10.26555/ijain.v8i3.691
Journal volume & issue
Vol. 8, no. 3
pp. 391 – 403

Abstract

Read online

Advances in information technology have given rise to online hotel reservation options. The user review feature is an important factor during the online booking of hotels. Generally, most online hotel booking service providers provide review and rating features for assessing hotels. However, not all service providers provide rating features or recap reviews for every aspect of the hotel services offered. Therefore, we propose a method to summarise reviews based on multiple aspects, including food, room, service, and location. This method uses long short-term memory (LSTM), together with hidden layers and automation of the optimal number of hidden neurons. The F1-measure value of 75.28% for the best model was based on the fact that (i) the size of the first hidden layer is 1,200 neurons with the tanh activation function, and (ii) the size of the second hidden layer is 600 neurons with the ReLU activation function. The proposed model outperforms the baseline model (also known as standard LSTM) by 10.16%. It is anticipated that the model developed through this study can be accessed by users of online hotel booking services to acquire a review recap on more specific aspects of services offered by hotels

Keywords