Deep Integration of Fiber-Optic Communication and Sensing Systems Using Forward-Transmission Distributed Vibration Sensing and on–off Keying
Runlong Zhu,
Xing Rao,
Shangwei Dai,
Ming Chen,
Guoqiang Liu,
Hanjie Liu,
Rendong Xu,
Shuqing Chen,
George Y. Chen,
Yiping Wang
Affiliations
Runlong Zhu
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Xing Rao
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Shangwei Dai
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Ming Chen
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Guoqiang Liu
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Hanjie Liu
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Rendong Xu
Ocean College, Zhejiang University, Hangzhou 316000, China
Shuqing Chen
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
George Y. Chen
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
Yiping Wang
Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
The deep integration of communication and sensing technology in fiber-optic systems has been highly sought after in recent years, with the aim of rapid and cost-effective large-scale upgrading of existing communication cables in order to monitor ocean activities. As a proof-of-concept demonstration, a high-degree of compatibility was shown between forward-transmission distributed fiber-optic vibration sensing and an on–off keying (OOK)-based communication system. This type of deep integration allows distributed sensing to utilize the optical fiber communication cable, wavelength channel, optical signal and demodulation receiver. The addition of distributed sensing functionality does not have an impact on the communication performance, as sensing involves no hardware changes and does not occupy any bandwidth; instead, it non-intrusively analyzes inherent vibration-induced noise in the data transmitted. Likewise, the transmission of communication data does not affect the sensing performance. For data transmission, 150 Mb/s was demonstrated with a BER of 2.8 × 10−7 and a QdB of 14.1. For vibration sensing, the forward-transmission method offers distance, time, frequency, intensity and phase-resolved monitoring. The limit of detection (LoD) is 8.3 pε/Hz1/2 at 1 kHz. The single-span sensing distance is 101.3 km (no optical amplification), with a spatial resolution of 0.08 m, and positioning accuracy can be as low as 10.1 m. No data averaging was performed during signal processing. The vibration frequency range tested is 10–1000 Hz.