AIMS Mathematics (Jul 2021)

Edge irregular reflexive labeling for the r-th power of the path

  • Mohamed Basher

DOI
https://doi.org/10.3934/math.2021604
Journal volume & issue
Vol. 6, no. 10
pp. 10405 – 10430

Abstract

Read online

Let $ G(V, E) $ be a graph, where $ V(G) $ is the vertex set and $ E(G) $ is the edge set. Let $ k $ be a natural number, a total k-labeling $ \varphi:V(G)\bigcup E(G)\rightarrow \{0, 1, 2, 3, ..., k\} $ is called an edge irregular reflexive $ k $-labeling if the vertices of $ G $ are labeled with the set of even numbers from $ \{0, 1, 2, 3, ..., k\} $ and the edges of $ G $ are labeled with numbers from $ \{1, 2, 3, ..., k\} $ in such a way for every two different edges $ xy $ and $ x^{'}y^{'} $ their weights $ \varphi(x)+\varphi(xy)+\varphi(y) $ and $ \varphi(x^{'})+\varphi(x^{'}y^{'})+\varphi(y^{'}) $ are distinct. The reflexive edge strength of $ G $, $ res(G) $, is defined as the minimum $ k $ for which $ G $ has an edge irregular reflexive $ k $-labeling. In this paper, we determine the exact value of the reflexive edge strength for the $ r $-th power of the path $ P_{n} $, where $ r\geq2 $, $ n\geq r+4 $.

Keywords