Remote Sensing (Jun 2024)

Enhancing Machine Learning Performance in Estimating CDOM Absorption Coefficient via Data Resampling

  • Jinuk Kim,
  • Jin Hwi Kim,
  • Wonjin Jang,
  • JongCheol Pyo,
  • Hyuk Lee,
  • Seohyun Byeon,
  • Hankyu Lee,
  • Yongeun Park,
  • Seongjoon Kim

DOI
https://doi.org/10.3390/rs16132313
Journal volume & issue
Vol. 16, no. 13
p. 2313

Abstract

Read online

Chromophoric dissolved organic matter (CDOM) is a mixture of various types of organic matter and a useful parameter for monitoring complex inland surface waters. Remote sensing has been widely utilized to detect CDOM in various studies; however, in many cases, the dataset is relatively imbalanced in a single region. To address these concerns, data were acquired from hyperspectral images, field reflection spectra, and field monitoring data, and the imbalance problem was solved using a synthetic minority oversampling technique (SMOTE). Using the on-site reflectance ratio of the hyperspectral images, the input variables Rrs (452/497), Rrs (497/580), Rrs (497/618), and Rrs (684/618), which had the highest correlation with the CDOM absorption coefficient aCDOM (355), were extracted. Random forest and light gradient boosting machine algorithms were applied to create a CDOM prediction algorithm via machine learning, and to apply SMOTE, low-concentration and high-concentration datasets of CDOM were distinguished by 5 m−1. The training and testing datasets were distinguished at a 75%:25% ratio at low and high concentrations, and SMOTE was applied to generate synthetic data based on the training dataset, which is a sub-dataset of the original dataset. Datasets using SMOTE resulted in an overall improvement in the algorithmic accuracy of the training and test step. The random forest model was selected as the optimal model for CDOM prediction. In the best-case scenario of the random forest model, the SMOTE algorithm showed superior performance, with testing R2, absolute error (MAE), and root mean square error (RMSE) values of 0.838, 0.566, and 0.777 m−1, respectively, compared to the original algorithm’s test values of 0.722, 0.493, and 0.802 m−1. This study is anticipated to resolve imbalance problems using SMOTE when predicting remote sensing-based CDOM. It is expected to produce and implement a machine learning model with improved reliable performance.

Keywords